FreeCDZ

КЕГЭ № 21. Выигрышная стратегия. Определение максимального, минимального значения (одна куча камней)

×

Задание 1

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 40. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 39. Укажите значение S, при котором: – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

×

Задание 2

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или три камня или увеличить количество камней в куче в четыре раза. Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 103. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 103или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 102. Найдите наименьшее значение S, при котором одновременно выполняются два условия: – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

×

Задание 3

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или три камня или увеличить количество камней в куче в четыре раза. Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 103. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 103 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 102. Сколько всего существует S, при которых одновременно выполняются два условия: – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

×

Задание 4

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 24. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 24 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 23. Укажите значение S, при котором: – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

×

Задание 5

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или три камня или увеличить количество камней в куче в четыре раза. Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 111. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 111 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 110. Сколько всего существует S, при котором одновременно выполняются два условия: – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

×

Задание 6

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или три камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 18 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 45. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 45 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 44. Укажите значение S, при котором: – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

×

Задание 7

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Игра завершается в тот момент, когда количество камней в куче становится не менее 24. Если при этом в куче оказалось не более 38 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче был 21 камень и Петя удвоит количество камней в куче, то игра закончится и победителем будет Ваня. В начальный момент в куче было S камней, 1 ≤ S ≤ 23. Кто выиграет при S = 9?

×

Задание 8

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или три камня или увеличить количество камней в куче в четыре раза. Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 111. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 111 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 110. Найдите наименьшее значение S, при котором одновременно выполняются два условия: – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

×

Задание 9

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу пять или десять камня или увеличить количество камней в куче в десять раз. Например, имея кучу из 15 камней, за один ход можно получить кучу из 20, 25 или 150 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 2024. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 2024 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 2023. Укажите минимальное значение S, при котором: – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

×

Задание 10

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу пять или десять камня или увеличить количество камней в куче в десять раз. Например, имея кучу из 15 камней, за один ход можно получить кучу из 20, 25 или 150 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 2024. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 2024 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 2023. Сколько существует таких S, при которых: – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.