Определение вероятности события и вероятности случайного события.
×
Задание 1
На экзамене 25 билетов, Сергей не выучил 3 из них. Найдите вероятность того, что ему попадётся выученный билет.
×
Задание 2
В лотерее разыгрывалось 12 компьютеров, 18 фотоаппаратов и 120 калькуляторов. Всего было выпущено 15000 лотерейных билетов. Какова вероятность, приобретя один билет, не выиграть никакого приза?
×
Задание 3
Миша с папой решили покататься на колесе обозрения. Всего на колесе двадцать четыре кабинки, из них 5 — синие, 7 — зеленые, остальные — красные. Кабинки по очереди подходят к платформе для посадки. Найдите вероятность того, что Миша прокатится в красной кабинке.
×
Задание 4
В мешке содержатся жетоны с номерами от 5 до 54 включительно. Какова вероятность того, что извлеченный наугад из мешка жетон содержит двузначное число?
×
Задание 5
В каждой десятой банке кофе есть приз. Призы распределены по банкам случайным образом. Варя покупает банку кофе в надежде выиграть приз. Найдите вероятность того, что Варя не найдет приз в своей банке.
×
Задание 6
В коробке лежат 12 белых и 16 красных шаров. Какова вероятность того, что выбранный наугад шар окажется белым?
×
Задание 7
Из двузначных чётных чисел наугад выбирают одно число.Какова вероятность того, что это число будет кратным числу 7?
×
Задание 8
Абонент забыл две последние цифры телефона и набирает их наугад. Какова вероятность правильно набрать номер, если абонент помнит только то, что две последние цифры различные и нечётные?
×
Задание 9
Абонент забыл две последние цифры телефона и набирает их наугад. Какова вероятность правильно набрать номер, если абонент помнит только то, что две последние цифры нечётные?
×
Задание 10
Среди двузначных чисел наугад выбирают одно число.Какова вероятность того, что его цифры в разрядах десятков и единиц равны?
×
Задание 11
В коробке лежат карандаши, из них 24 карандаша - синие, 8 карандашей - зелёные, а остальные - жёлтые. Сколько карандашей лежит в коробке, если вероятность того, что выбранный наугад карандаш будет жёлтым составляет \(\frac{1}{3}?\)
×
Задание 12
Из натуральных чисел от 1 до 18 включительно ученик называет одно. Какова вероятность того, что это число является делителем числа 12?
