FreeCDZ

Практикум ЕГЭ по профильной математике. Задание №4

×

Задание 1

В классе 26 учащихся, среди них три подружки — Оля, Аня и Юля. Класс случайным образом разбивают на две равные группы. Найдите вероятность того, что все три девочки окажутся в одной группе.

×

Задание 2

Две фабрики выпускают одинаковые стёкла для автомобильных фар. Первая фабрика выпускает 30% этих стёкол, вторая — 70%, причём брак стёкол, изготовленных фабриками, составляет на первой фабрике 5 % , на второй — 4 % . Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

×

Задание 3

Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Биолог» выиграет жребий ровно два раза.

×

Задание 4

В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,25. Вероятность того, что кофе закончится в обоих автоматах, равна 0,1. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

×

Задание 5

Биатлонист 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,6. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последние 2 раза промахнулся. Результат округлите до сотых.

×

Задание 6

Игральный кубик бросают дважды. Известно, что в сумме выпало 6 очков. Найдите вероятность того, что в первый раз выпало 2 очка.

×

Задание 7

При выпечке хлеба производится контрольное взвешивание свежей буханки. Известно, что вероятность того, что масса окажется меньше, чем 810 г, равна 0,96. Вероятность того, что масса окажется больше, чем 790 г, равна 0,93. Найдите вероятность того, что масса буханки больше, чем 790 г, но меньше, чем 810 г.

×

Задание 8

Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 9 очков в двух играх. Если команда выигрывает, она получает 7 очков, в случае ничьей — 2 очка, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,2.

×

Задание 9

Вероятность того, что батарейка бракованная, равна 0,03. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.

×

Задание 10

Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 5. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.