FreeCDZ

СПО. Расширенный. Нахождение общего вида первообразных заданной функции. Нахождение для функции первообразной, удовлетворяющей заданному условию

×

Задание 1

Найдите общий вид первообразных для функции\(f(x)=2sinx-\frac{1}{x^3}+2^x\).

×

Задание 2

Найдите общий вид первообразных для функции\(f(x)=\frac{3}{x}-3e^x+\frac{5}{sin^2x}\).

×

Задание 3

Найдите общий вид первообразных для функции\(f(x)=\frac{x^2-1}{2x}\)на промежутке\((0;+\infty)\).

×

Задание 4

Найдите неопределённый интеграл\(\int(\frac{3}{sin^2(2x+1)}+\frac{7}{cos^2(x-1)})dx\).

×

Задание 5

Найдите неопределённый интеграл\(\int(3sinx+4cosx-\frac{1}{\sqrt{x}})dx\).

×

Задание 6

Найдите неопределённый интеграл\(\int(5sin2x-3cos\frac{x}{2})dx\).

×

Задание 7

Найдите неопределённый интеграл\(\int(\frac{5}{5x+1}-e^{2-3x})dx\).

×

Задание 8

Для функции\(f(x)=x-\frac{1}{x^2}\)найдите первообразную, график которой проходит через точкуA(2;2,5).В ответ запишите значение постоянной для найденной первообразной.

×

Задание 9

Для функции\(f(x)=\frac{2}{3-2x}\)найдите первообразную на промежутке\((1,5;+\infty){,}\)график которой проходит через точкуT(2;4,7).В ответ запишите значение постоянной для найденной первообразной. Ответ запишите в виде десятичной дроби без пробелов между символами, отделив целую часть от дробной с помощью запятой.

×

Задание 10

Для функции\(f(x)=cos(2x-\frac{\pi}{6})\)найдите первообразную, график которой проходит через точку\(M(\frac{\pi}{3};\frac{3}{4}).\)В ответ запишите значение постоянной для найденной первообразной. Ответ запишите в виде десятичной дроби без пробелов между символами, отделив целую часть от дробной с помощью запятой.