Задание ЕГЭ №4. Профильный уровень. Вероятности сложных событий. Вариант 3
×
Задание 1
Стрелок стреляет по одному разу в каждую из четырёх мишеней. Вероятность попадания в мишень при каждом отдельном выстреле равна 0,6. Найдите вероятность того, что стрелок попадёт в две первые мишени и не попадёт в две последние.
×
Задание 2
Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,2 при каждом отдельном выстреле. Какое наименьшее количество патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,6?
×
Задание 3
Стрелок стреляет по 4 одинаковым мишеням по одному разу, вероятность промаха 0,2. Найдите вероятность, что он попадёт в первую мишень, а в 3 оставшиеся промахнётся.
×
Задание 4
Две фабрики выпускают одинаковые стёкла для автомобильных фар. Первая фабрика выпускает 60% этих стекол, вторая — 40%. Среди стёкол, выпускаемых первой фабрикой, брак составляет 3%. Среди стёкол, выпускаемых второй фабрикой, брак составляет 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
×
Задание 5
Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,4 при каждом отдельном выстреле. Какое наименьшее количество патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,9?
×
Задание 6
Первый игральный кубик обычный, а на гранях второго кубика нет нечётных чисел, а чётные числа 2, 4 и 6 встречаются по два раза. В остальном кубики одинаковые. Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 4 и 6 очков. Какова вероятность того, что бросали второй кубик?
×
Задание 7
Игральную кость бросили два раза. Известно, что два очка не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 10».
×
Задание 8
В викторине участвуют 6 команд. Все команды разной силы, и в каждой встрече выигрывает та команда, которая сильнее. В первом раунде встречаются две случайно выбранные команды. Ничья невозможна. Проигравшая команда выбывает из викторины, а победившая команда играет со следующим случайно выбранным соперником. Известно, что в первых трёх играх победила команда А. Какова вероятность того, что эта команда выиграет четвёртый раунд?
×
Задание 9
Телефон передаёт SMS-сообщение. В случае неудачи телефон делает следующую попытку. Вероятность того, что сообщение удастся передать без ошибок в каждой отдельной попытке, равна 0,5. Найдите вероятность того, что для передачи сообщения потребуется не больше трёх попыток.
×
Задание 10
При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем — 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98? В ответе укажите наименьшее необходимое количество выстрелов.
